## **Linear Functions - Practice 1**

Name:

1) Determine the equation of each line shown below.





c) 
$$y=2\times-5$$

d) 
$$y = -\frac{2}{3} \times +8$$



2) Determine the equation of each line given the information below.

a) point on line: 
$$(10,2)$$
 slope =  $1/2$ 

$$2 = \frac{1}{2}(10) + 6$$
  
 $b = -3$ 

$$y = \frac{1}{2}x - 3$$

b) x-intercept of -5, slope = 1

$$0 = -5(1)$$

$$(-5,0)$$
  $0=-5(1)+b$   $y=x+5$ 
 $b=5$ 

c) Line passes through points (2,-1) and (5,-3)

$$5lope = \frac{-3 - -1}{5 - 2}$$

$$-1 = -\frac{2}{3}(2) + 6$$

$$5lope = \frac{-3 - -1}{5 - 2} = -\frac{2}{3}$$

$$-1 = -\frac{2}{3}(2) + b \quad b = \frac{1}{3}$$

$$V = -\frac{2}{3}X + \frac{1}{3}$$

3) Mr. Haas got a summer job delivering pizzas. He decided that the delivery charge should be a linear equation, where the cost of delivery is a function of the distance from the pizza restaurant. The table shows the cost for four different distances.

| Distance | Cost      |
|----------|-----------|
| (miles)  | (dollars) |
| 2        | 2         |
| 4        | 3         |
| 6        | 4         |
| 8        | 5         |

a) Find the linear equation represented by the data in the table.

$$S(ape = \frac{1}{2})$$
  $2 = \frac{1}{2} \cdot 2 + 6$   
 $b = 1$ 

b) What does the slope tell you in terms of distance and cost?

c) What is the y-intercept? What does it tell you in terms of distance and cost?

d) Use your equation to determine the cost of delivering a pizza 1000 miles

e) Use your equation to determine the delivery distance where the cost would be \$0.

$$0 = .5 \times +1$$

$$-\frac{1}{.5} = \times$$

$$x = -2$$

$$-2 \quad \text{miles}.$$